Question 13
SSC-CGL 2020 Mar 4 Shift 1
If 5 sin²θ + 14 cosθ = 13, then (secθ - tanθ)/(secθ + tanθ)=?
Solution in Detail
To find $\displaystyle \frac{\sec \theta - \tan \theta}{\sec \theta + \tan \theta}$
Convert sec and tan to sin, cos and simplify the requirement to
$\displaystyle \frac{1 - \sin \theta}{1 + \sin \theta}\text{ . . . (1)}$
Given $\displaystyle 5\sin^2 \theta + 14 \cos \theta = 13$
Use $\displaystyle \sin^2 \theta = 1 - \cos^2 \theta$ to get
$\displaystyle 5\cos^2\theta - 14\cos\theta + 8 = 0$
$\displaystyle (5\cos\theta - 4)(\cos \theta - 2) = 0$
$\displaystyle \therefore \cos \theta = 2, 4/5$
$\displaystyle \cos \theta $ cannot exceed 1,$\displaystyle \therefore \cos \theta = 4/5$
Pyth triplets are 4, 5 and 3
$\displaystyle \therefore \sin \theta = 3/5$
Putting in (1) and simplifying,
$\displaystyle = \frac{1 - 3/5}{1 + 3/5} = \frac14\:\underline{Ans}$
More Solved Papers
This Blog Post/Article "(solved)Question 13 SSC-CGL 2020 March 4 Shift 1" by Parveen is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.