Question 5
SSC-CGL 2019 June 13 Shift 1
If 2 sinθ = 5 cosθ, then (sinθ + cosθ)/(sinθ - cosθ) = ?
- 5/3
- 9/5
- 2/3
- 7/3
Solution in Short
2 sinθ = 5 cosθ gives tanθ = 5/2. To find (sinθ + cosθ)/(sinθ - cosθ) divide numerator and denominator by cosθ to get (tanθ + 1)/(tanθ - 1) = (5/2 + 1)/(5/2 - 1) = 7/3 answer!
Solution in Detail
Given $\displaystyle 2\sin \theta = 5 \cos \theta$
$\displaystyle \implies \frac{\sin \theta}{\cos \theta} = \frac 52\text{ . . . (1)}$
Remember componendo dividendo?
If $\displaystyle \frac xy = \frac pq \implies \frac{x + y}{x - y} = \frac{p + q}{p - q}$
$\displaystyle \therefore \text{ from (1) } \frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta} = \frac{5 + 2}{5 - 2}$
$\displaystyle \implies \frac 73 \:\underline{Ans}$
More Solved Papers
This Blog Post/Article "(solved)Question 5 SSC-CGL 2019 June 13 Shift 1" by Parveen is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.