Question 23
SSC-CGL 2020 Mar 3 Shift 2
If sinθ = 1/4, then the value of 8(cosθ + cotθ) is?
Solution in Detail
Given $\displaystyle \sin \theta = \frac 14$
$\displaystyle \therefore H = 4, P = 1$
so $\displaystyle B = \sqrt{4^2 - 1} = \sqrt {15}$
$\displaystyle \implies \cos \theta = \frac BH = \frac{\sqrt {15}}{4}$
$\displaystyle \cot \theta = \frac BP= \frac{\sqrt {15}}{1} = \sqrt {15}$
$\displaystyle \therefore 8(\cos \theta + \cot \theta)$
$\displaystyle = 8\bigg(\frac{\sqrt {15}}{4} + \sqrt {15}\bigg)$
$\displaystyle =10\sqrt{15}\:\underline{Ans}$
More Solved Papers
This Blog Post/Article "(solved)Question 23 SSC-CGL 2020 March 3 Shift 2" by Parveen is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.