Question 1
SSC-CGL 2020 Mar 4 Shift 1
If $\displaystyle 5x + \frac {1}{3x} = 4$, then $\displaystyle 9x^2 + \frac{1}{25x^2}$ =?
Solution in Detail
Given $\displaystyle 5x + \frac {1}{3x} = 4$
With an eye on the required expression, multiply both sides by 3/5 to get
$\displaystyle \frac35 \times \bigg(5x + \frac {1}{3x} = 4\bigg)$
$\displaystyle \therefore 3x + \frac{1}{5x} = \frac{12}{5}$
$\displaystyle \therefore \bigg(3x + \frac{1}{5x}\bigg)^2 = \bigg(\frac{12}{5}\bigg)^2$
squaring and simplifying,
$\displaystyle 9x^2 + \frac 65 + \frac{1}{25x^2} = \frac{144}{25} $
$\displaystyle \therefore 9x^2 + \frac{1}{25x^2} = \frac{144}{25} -\frac65$
$\displaystyle = \frac{114}{25}\:\underline {Ans}$
More Solved Papers
This Blog Post/Article "(solved)Question 1 SSC-CGL 2020 March 4 Shift 1" by Parveen is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.