Question 11
SSC-CGL 2020 Mar 4 Shift 2
The value of $\displaystyle \frac{\tan^2\theta - \sin^2 \theta}{2 + \tan^2 \theta + \cot^2 \theta}$ is?
- $\displaystyle \sin^6 \theta$
- $\displaystyle \cos^4 \theta$
- $\displaystyle \tan^3 \theta$
- $\displaystyle \sec^5 \theta$
Solution in Short
Choose an angle so that each of the given options gives a different value on that! Once such value is θ = 45°.
$\displaystyle \frac{\tan^2\theta - \sin^2 \theta}{2 + \tan^2 \theta + \cot^2 \theta}$
$\displaystyle = \frac{\tan^2 45 \degree - \sin^2 45 \degree}{2 + \tan^2 45 \degree + \cot^2 45 \degree}$
$\displaystyle = \frac{1 - 1/2}{2 + 1 + 1} = \frac 18$
We can verify that option (a) gives $\displaystyle \sin^6 45 \degree = 1/8$, and hence the correct answer!
More Solved Papers
This Blog Post/Article "(solved)Question 11 SSC-CGL 2020 March 4 Shift 2" by Parveen is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.