(solved)Question 2.17 of NCERT Class XI Chemistry Chapter 2

Calculate the wavenumber for the longest wavelength transition in the Balmer series of atomic hydrogen.

Categories | About Hoven's Blog

Parveen,

Question 2.17
NCERT Class XI Chemistry

Calculate the wavenumber for the longest wavelength transition in the Balmer series of atomic hydrogen.

Video Explanation
(detailed solution given after this video)

Please watch this youtube video for a quick explanation of the solution:

Solution in Detail

wavenumber $\displaystyle \overline{\nu} = \frac{1}{\lambda}$

longest wavelength ⇒ shortest wavenumber

but wavenumber for balmer series H atom is

$\displaystyle \overline{\nu} = 109677 \bigg(\frac{1}{2^2} - \frac{1}{n^2}\bigg) \text{cm}^{-1}$

where n = 3, 4, 5, and so on

$\displaystyle \implies \overline{\nu}$ is shortest if $\displaystyle n = \text{ lowest }= 3$

$\displaystyle \therefore \overline{\nu} = 109677 \bigg(\frac{1}{2^2} - \frac{1}{3^2}\bigg) \text{cm}^{-1}$

$\displaystyle = 109677 \times \frac{5}{36} \text{ cm}^{-1} $

$\displaystyle = 15233 \text{ cm}^{-1} = 15233 \times 10^2 \text{ m}^{-1}$

$\displaystyle = 1.5233 \times 10^6 \text{ m}^{-1} \:\underline{Ans}$

Creative Commons License
This Blog Post/Article "(solved)Question 2.17 of NCERT Class XI Chemistry Chapter 2" by Parveen is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.