Question 2.17
NCERT Class XI Chemistry
Calculate the wavenumber for the longest wavelength transition in the Balmer series of atomic hydrogen.
Video Explanation
(detailed solution given after this video)
Please watch this youtube video for a quick explanation of the solution:
Solution in Detail
wavenumber $\displaystyle \overline{\nu} = \frac{1}{\lambda}$
longest wavelength ⇒ shortest wavenumber
but wavenumber for balmer series H atom is
$\displaystyle \overline{\nu} = 109677 \bigg(\frac{1}{2^2} - \frac{1}{n^2}\bigg) \text{cm}^{-1}$
where n = 3, 4, 5, and so on
$\displaystyle \implies \overline{\nu}$ is shortest if $\displaystyle n = \text{ lowest }= 3$
$\displaystyle \therefore \overline{\nu} = 109677 \bigg(\frac{1}{2^2} - \frac{1}{3^2}\bigg) \text{cm}^{-1}$
$\displaystyle = 109677 \times \frac{5}{36} \text{ cm}^{-1} $
$\displaystyle = 15233 \text{ cm}^{-1} = 15233 \times 10^2 \text{ m}^{-1}$
$\displaystyle = 1.5233 \times 10^6 \text{ m}^{-1} \:\underline{Ans}$
Similar Posts
This Blog Post/Article "(solved)Question 2.17 of NCERT Class XI Chemistry Chapter 2" by Parveen is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.