Question 2
SSC-CGL 2019 June 13 Shift 1
If $\displaystyle \sqrt x + \frac{1}{\sqrt x} = \sqrt 6$, then $\displaystyle x^2 + \frac{1}{x^2}$ = ?
- 18
- 14
- 16
- 12
Solution in Brief
A shortcut trick: Square of the power on LHS = square of the value on the right minus 2. So $\displaystyle x + \text{. . . } $ $\displaystyle = (\sqrt 6)^2 - 2 = 4$. Squaring once again, $\displaystyle x^2 + \text{. . . }$ = $\displaystyle 4^2 - 2$ = 14 ans!
Solution in Detail
Given $\displaystyle \sqrt x + \frac{1}{\sqrt x} = \sqrt 6 \text{. . . (1)}$
Recall that $\displaystyle (a + b)^2 = a^2 + 2ab + b^2$
Square both sides of (1) to get LHS:
$\displaystyle (\sqrt x)^2 + 2\cdot \sqrt x \cdot \frac{1}{\sqrt x} + \bigg(\frac{1}{\sqrt x}\bigg)^2$
and $\displaystyle \therefore x + 2 + \frac 1x = (\sqrt 6)^2$
which gives $\displaystyle x + \frac 1x = 4 \text{ . . . (2)}$
Squaring (2), we get
$\displaystyle x^2 + 2\cdot x^2 \cdot\frac {1}{x^2} + \frac {1}{x^2} = 16$
$\displaystyle \therefore x^2 + \frac{1}{x^2} = 16 - 2 = 14$ Ans!
More Solved Papers
This Blog Post/Article "(solved)Question 2 SSC-CGL 2019 June 13 Shift 1" by Parveen is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.