Table of Contents (top down ↓)
Question: Order of log^k (N)
Prove that for any constant k, $\displaystyle \log^k{N} = O(N)$
Solution in Detail
(video solution below this)
We can easily prove using calculus [scroll down for the proof]:
$\displaystyle \ln x < x, x \geqslant 1$
Put $\displaystyle x= N^{(1/k)}$
$\displaystyle \therefore \ln {(N^{(1/k)})} < N^{(1/k)}$
$\displaystyle \implies \frac 1k \times \ln {N} < N^{(1/k)}$
$\displaystyle \implies \bigg(\frac 1k \times \ln {N}\bigg)^k < N$
$\displaystyle \implies \bigg(\frac 1k \times \ln b \cdot \log_b {N}\bigg)^k < N$
$\displaystyle \implies \log_b ^k {N}< \frac{k^k}{ (\ln b)^k} \times N$
$\displaystyle \implies \log^k {N} = O(N)\:\text{QED}$
Comments and Discussion
Leave your comments on the youtube comments box.
(appendix) Proof of $\displaystyle \ln x < x, x \geqslant 1$
consider $\displaystyle g(x) = x - \ln x$
$\displaystyle \implies g'(x) = 1 - \frac 1x$
$\displaystyle \implies g'(x) \geqslant 0, x \geqslant 1 $
$\displaystyle \implies g(x)$ is increasing
but $\displaystyle g(1) \gt 0$
$\displaystyle \implies x - \ln x \gt 0, x \geqslant 1$
transposing, $\displaystyle \ln x \lt x$ proved!
Similar Posts
This Blog Post/Article "(solved)Prove that for any constant k, log^k (N) = O(N)" by Parveen is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.